If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24x^2-10x-4=0
a = 24; b = -10; c = -4;
Δ = b2-4ac
Δ = -102-4·24·(-4)
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{484}=22$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-22}{2*24}=\frac{-12}{48} =-1/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+22}{2*24}=\frac{32}{48} =2/3 $
| x^2=21^2-9^2 | | Y-2/3+2y=5/3 | | 3.2(d+92)=323.2 | | 124=2z+16 | | 4(b-3)=12 | | 5x+32=8-5 | | 12+4m=4(m+3) | | 19w+16=16 | | -1/3(9x+42)-5x=-7 | | 6(3x—5)-7=25 | | 19+j=24 | | 0.4(p-425)=204 | | 19w+16=1619w=w= | | 9(j+74)=738 | | 376=8(s+47) | | 3(v+42)=168 | | 10(x-37)=90 | | (w-19)7=42 | | 158x43=6794 | | 40/56=x/14 | | X^2=40-16x | | 5x-10-2x+19=180 | | 64=4(u+13) | | -5+3x=6x-20 | | 2x-1=-4x-5 | | 2x-1=-4x05 | | x-(-43)=39 | | 9(d+7)=81 | | (2/3)(6c-18)+(3/4)(8c+32=-18 | | 6(b-1)=24 | | x-60=2/3x | | 5^x^2-16x-46=25^1-9x |